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Mass spectrometric studies have revealed that thiolate-protected @) ) | @
gold (Au:SR) clusters with specific compositions show extraordi- fl '
narily high stability’~> However, the origin of the magic stability, Aups(SG)yg s_'g_*k ba T 10
a topic of fundamental importance to nanomaterials science, remains ,rg/\ /|3 - 25,18)(TOA"),
unclear. This is partly because hitherto-isolated Au:SR clusters do s / ! 8 lroa X8
not always correspond to inherently stable species, but rather to 8 , -g 1)
metastable species kinetically trapped during growth protes. % 1 /\'I,/ u\ : 25,184
It is natural to expect that the inherent stability of magic Au:SR g/ \ 8 I (@5, 18ToAY,
clusters can be explained in terms of closing of electronic and/or ' '. ow @080 Ty (+)2
geometric shells. Since, to a first approximation, gold can be 2 \ = = 209
regarded as anlelectron system, the electronic shell model 2 (4)
explains the stability of Au clusters in the gas pKased those 1020 0 Tde 0 T 5000 10000
stabilized by phosphinéslsolation of negatively charged Au:SR Photon energy (eV) mz
clusters (e.g., [Au7SCsH1g '~ (ref 8), [Aus(SPhyg?~ (ref 1c), Figure 1. (&) Optical absorption spectra of A(SG)s, 1, and2. (b) Positive

and [Aws(SGH4Ph)s «(S-PEG)]'~ (ref 2d)) has raised the pos- and negative ESI massiipectra 1f2, and 1'. The notation 1§, m~'*)
sibility that their stability is also governed by such electronic factors. represents [AUSCeHag)n] ™"

In contrast, size-selective synthesis of larger Au:SR clusters has scheme 1. Preparation of Cluster Samples 1—4

been ascribed to preferential formation of highly symmetrical Au

cores? A new structural motif has been proposed for&8CHs)4, AuCl” 1=, 1 (7205 |

in which a Auy core is fully protected by six ASCH;)4 cyclic + CeblytH N

oligomersl® Such a coreshell structure may be responsible for Au(1)-SCeH,g |%».ﬂm:scﬁms - residue

the stability of small Au:SR clusters. Moot tte. 20 (11)
We recently discovered that A4(SG) s has the highest resistance +Col80,) e,

to core etching reactioff®and spontaneous decompositftamong 24

the series of glutathionate-protected gold (Au:SG) clusters. lwasa

and Nobusada have predicted theoretically that the geometricalinto the toluene phase were allowed to react with an aqueous
structure of the most stable isomer of A(BCH)1g] * is constructed  solution of sodium borohydride (NaBj After 3 h, the clusters in
from a nearly planar Ag* core and a cage made of onesAU  the organic phase were collected. Then, clusternd 2 were
(SCHy)12 and two Ay(SCHy)s cyclic oligomers!! This “core-in- obtained by extraction of the product by acetonitrile and subse-
cage” structure could reproduce several experimental observationsguently by 1:1 acetonitrile/acetone, respectively. Typical yield of
of Aups(SG)s, such as its optical spectrum (Figure ¥a)-ray 2is 1.5 times higher than that dfin weight.

diffraction patterr* X-ray magnetic circular dichroisi?and*** The optical spectra df and2 exhibit characteristic profiles that
Au Mdossbauer spectruti? The present work aims to investigate gre very similar to that of Au(SG)g (Figure 1afbc9The negative

the effect of charge state on the stability of4$G) s and thereby ESI mass spectrum dfexhibits a single [Aus(SCsH13)15] 1 peak,
shed light on the origin of the magic stability. Here, we studied by whose assignment was confirmed by comparison with the mass
ESI mass spectrometry the charge state offf8CsH;3)1¢]" that spectrum of [Aus(SCi-Hog)1gY (Figure S1)23 Interestingly,

has no charging site in the organic layer instead 0fsfG)g [Auos(SCsH13)1t~ was detected also in the positive ESI mass
having the deprotonation sites. We further probed the stability of spectrum ofl in the form of [As(SCsH13)1¢) " (TOA™), (Figure
[Au2s(SGsH13)1¢]° against redox reactions by voltammetric measure- 1h), demonstrating that TO®acts as a counterion. To the best of
ment and by mass spectrometric analysis of the oxidized and oyr knowledge, this is the first ESI mass spectrum ofsfSR)s

reduced products. These studies revealed thats(8GsH13)1g]* is utilizing the net charge of the core, rather than the charge of the
stable regardless of the charge statexfer 1—, 0, and H. This ligands!ab2d.35.9n contrast, ion signals due to [ASCeH13)1g 1
result suggests that the magic stability of p&CsH13)1¢], or more were observed in neither the positive nor the negative ESI mass
generally Aus(SR)s, is attributable to geometric rather than spectra of fraction2 (Figure 1b), suggesting the formation of
electronic factors. “neutral” [Au,s(SGsH13)16]%. These results indicate that some of the
The preparation method of the [ASCH13)1g]* samples is neutral Au:S cores were reduced by NaBih the Schiffrin
summarized in Scheme!? According to the Schiffrin methot, methods4 Thus, the tenacious remnant of TOAhat is often

Au(l) —SGHy3 polymers extracted by tetraoctylammonium (TQA  observed in Au:SR clustéfsis thought to be due to the fact that
TOA™T acts as a counterion to stabilize the negatively charged

Igggﬁ%ﬁg f,ﬂ;g}{'ﬁ!g%ﬂ'%fﬁfo'}ggy clusters. What then determines the branching fraction between
8§ CREST. [AU25(SC6H13)18]17 (1) and [AL!25(SC6H13)18]0 (2)7 One can easily
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Figure 2. (a) Optical spectra and (b) ESI mass spectr& ¢fop) and4
(bottom). The optical spectrum &fis superimposed in panel (a).

conclude that geometric rather than electronic factors are responsible
for the magic stability of [Aus(SGsH13)1g)* (X = 1—, 0, 1+). The
striking similarity between the optical spectrum of AEG)s and
those of2 and 4 suggests that the head groups of thiolates have
little impact on the electronic and geometric structures of the Au:S
cores of Aus(SR)s.2° Finally, we note that the mass spectrometric
approach employed here is highly effective in determining the
chemical compositions and charge states of hydrophobic Au:SR
clusters.
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possibility, we mass-analyzed the extracts by acetonitti)efiiom

the products obtained after a shorter reduction time (30 min). The References
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